পরিসংখ্যান

সূচালতা ও ইহার প্রকারভেদ

একাদশ- দ্বাদশ শ্রেণি - পরিসংখ্যান - পরিসংখ্যান ১ম পত্র | NCTB BOOK

সূচালতা (Skewness)

সূচালতা একটি পরিমাপ যা একটি ডেটা সেটের বন্টনের আকার এবং তার গড়ের সাথে সংশ্লিষ্ট অবস্থানকে বর্ণনা করে। এটি বিশেষভাবে দেখায় যে ডেটা সেটটি গড়ের চারপাশে কতটা সমমিত বা অসমমিত। সূচালতা বন্টনের আকৃতি সম্পর্কে গুরুত্বপূর্ণ ধারণা প্রদান করে।


সূচালতার প্রকারভেদ

সূচালতাকে প্রধানত তিনটি প্রকারে ভাগ করা যায়:

১. ধনাত্মক সূচালতা (Positive Skewness)

  • ধনাত্মক সূচালতার ক্ষেত্রে ডেটার বন্টন ডানদিকে লম্বা হয় (টেইলড)।
  • গড় (Mean) বড় হয়ে যায়, কারণ ডেটার বেশ কিছু মান গড়ের চেয়ে অনেক বড়।
  • সম্পর্ক: গড় > মধ্যমা > ঔসত্য।
  • উদাহরণ: আয়ের বন্টন যেখানে কিছু মানুষের আয় অত্যন্ত বেশি।

২. ঋণাত্মক সূচালতা (Negative Skewness)

  • ঋণাত্মক সূচালতার ক্ষেত্রে ডেটার বন্টন বামদিকে লম্বা হয় (টেইলড)।
  • গড় ছোট হয়ে যায়, কারণ ডেটার বেশ কিছু মান গড়ের চেয়ে অনেক ছোট।
  • সম্পর্ক: গড় < মধ্যমা < ঔসত্য।
  • উদাহরণ: পরীক্ষার নম্বর যেখানে অধিকাংশ শিক্ষার্থী উচ্চ নম্বর পেয়েছে, কিন্তু কিছু শিক্ষার্থীর নম্বর খুবই কম।

৩. শূন্য সূচালতা (Zero Skewness)

  • শূন্য সূচালতার ক্ষেত্রে ডেটার বন্টন পুরোপুরি সমমিত হয়।
  • ডেটার গড়, মধ্যমা এবং ঔসত্য সমান হয়।
  • উদাহরণ: বেল-আকৃতির বন্টন (যেমন: স্বাভাবিক বন্টন)।

সূচালতার গণনার সূত্র

সূচালতা সাধারণত এই সূত্র দিয়ে গণনা করা হয়:


সারসংক্ষেপ

সূচালতা ডেটার বন্টনের আকৃতি ও তার গড়ের সাথে সম্পর্কিত অবস্থান সম্পর্কে ধারণা দেয়। এটি তিন ধরনের হতে পারে: ধনাত্মক, ঋণাত্মক এবং শূন্য। সূচালতা ডেটা বিশ্লেষণের একটি গুরুত্বপূর্ণ পরিমাপ, যা আমাদের ডেটার বৈশিষ্ট্য বুঝতে সাহায্য করে।

Content added By
Promotion